Big line bundles over arithmetic varieties
نویسنده
چکیده
5 Equidistribution Theory 26 5.1 A Generic Equidistribution Theorem . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Equidistribution at Infinite Places . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Equidistribution at Finite Places . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4 Equidistribution of Small Subvarieties . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Equidistribution over Algebraic Dynamical Systems . . . . . . . . . . . . . . 37 5.6 Equidistribution over Multiplicative Groups . . . . . . . . . . . . . . . . . . 39 5.7 Equidistribution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
منابع مشابه
Heights for line bundles on arithmetic surfaces
In this paper we will suggest a construction for height functions for line bundles on arithmetic varieties. Following the philosophy of [BoGS] heights should be objects in arithmetic geometry analogous to degrees in algebraic geometry. So let K be a number field, OK its ring of integers and X /OK an arithmetic variety, i.e. a regular scheme, projective and flat over OK , whose generic fiber X/K...
متن کاملOn volumes of arithmetic line bundles
We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which uses Okounkov bodies to study linear series of line bundles. As applications, we derive a log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita approximation theorem for big line bundles.
متن کاملTwisted Torus Bundles over Arithmetic Varieties
A twisted torus is a nilmanifold which is the quotient of a real Heisenberg group by a cocompact discrete subgroup. We construct fiber bundles over arithmetic varieties whose fibers are isomorphic to a twisted torus, and express the complex cohomology of such bundles over certain Riemann surfaces in terms of automorphic forms.
متن کاملThe arithmetic Hodge index theorem for adelic line bundles
In this paper, we prove index theorems for integrable metrized line bundles on projective varieties over complete fields and number fields respectively. As applications, we prove a non-archimedean analogue of the Calabi theorem and a rigidity theorem about the preperiodic points of algebraic dynamical systems.
متن کاملCanonical Heights, Invariant Currents, and Dynamical Systems of Morphisms Associated with Line Bundles
We construct canonical heights of subvarieties for dynamical systems of several morphisms associated with line bundles defined over a number field, and study some of their properties. We also construct invariant currents for such systems over C. Introduction Let X be a projective variety over a field K and fi : X → X (i = 1, · · · , k) morphisms over K. Let L be a line bundle on X, and d > k a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008